61 research outputs found

    A Keplerian gaseous disk around the B0 star R Mon

    Get PDF
    We present high-angular resolution observations of the circumstellar disk around the massive Herbig Be star R Mon (M~8 Msun) in the continuum at 2.7mm and 1.3mm and the CO 1->0 and 2->1 rotational lines. Based on the new 1.3mm continuum image we estimate a disk mass (gas+dust) of 0.007 Msun and an outer radius of <150 AU. Our CO images are consistent with the existence of a Keplerian rotating gaseous disk around this star. Up to our knowledge, this is the most clear evidence for the existence of Keplerian disks around massive stars reported thus far. The mass and physical characteristics of this disk are similar to thoseof the more evolved T Tauri stars and indicate a shorter timescale for the evolution and dispersal of circumstellar disks around massive stars which lose most of their mass before the star becomes visible.Comment: 5 page

    The dusty disk around VV Ser

    Full text link
    We have carried out observations at millimeter and centimeter wavelengths towards VV Ser using the Plateau de Bure Interferometer and the Very Large Array. This allows us to compute the SED from near infrared to centimeter wavelengths. The modeling of the full SED has provided insight into the dust properties and a more accurate value of the disk mass. The mass of dust in the disk around VV Ser is found to be about 4 10^(-5) Msun, i.e. 400 times larger than previous estimates. Moreoever, the SED can only be accounted for assuming dust stratification in the vertical direction across the disk. The existence of small grains (0.25--1 micron) in the disk surface is required to explain the emission at near- and mid-infrared wavelengths. The fluxes measured at millimeter wavelengths imply that the dust grains in the midplane have grown up to very large sizes, at least to some centimeters.Comment: To appear in Ap

    Dissecting an intermediate-mass (IM) protostar: Chemical differentiation in IC1396N

    Full text link
    We have carried out high-angular resolution (1.4") observations in the continuum at 3.1mm and in the N2H+ 1-0, CH3CN 5_k-4_k and 13CS 2-1 lines using the Plateau de Bure Interferometer (PdBI) towards the intermediate mass (IM) protostar IRAS21391+5802 (IC1396N). In addition, we have merged the PdBI images with previous BIMA (continuum data at 1.2mm and 3.1mm) and single-dish (N2H+ 1-0) data to have a comprehensive description of the region. The combination of our data with BIMA and 30m data show that the bipolar outflow associated has completely eroded the initial molecular globule. The 1.2mm and 3.1mm continuum emissions are extended along the outflow axis tracing the warm walls of the biconical cavity. Most of the molecular gas, however, is located in an elongated feature in the direction perpendicular to the outflow. A strong chemical differentiation is detected across the molecular toroid, with the N2H+ 1-0 emission absent in the inner region.This chemical differentiation can be understood in terms of the different gas kinetic temperature. The [CH3CN]/[N2H+] ratio increases by 5 orders of magnitude with gas temperature, for temperatures between 20K and 100K. The CH3CN abundance towards IRAM 2A, the most massive protostellar core, is similar to that found in hot corinos and lower than that expected towards IM and high mass hot cores. This could indicate that IRAM 2A is a low mass or at most Herbig Ae star (IRAM 2A) instead of the precursor of a massive Be star. Alternatively, the low CH3CN abundance could also be the consequence of IRAM 2A being a Class 0/I transition object which has already formed a small photodissociation region (PDR).Comment: accepted A&

    Massive young disks around Herbig Ae stars

    Full text link
    Herbig Ae stars (HAe) are the precursors of Vega-type systems and, therefore, crucial objects in planet formation studies. Thus far, only a few disks associated with HAe stars have been studied using millimetre interferometers. Our aim is to determine the dust evolution and the lifetime of the disks associated with Herbig Ae stars. We imaged the continuum emission at 3 mm and 1.3 mm of the Herbig Ae/Be stars BD+61154, RR Tau, VY Mon and LkHa 198 using the Plateau de Bure Interferometer (PdBI). These stars are in the upper end of the stellar mass range of the Herbig Ae stars (stellar mass greater than 3 solar masses). Our measurements were used to complete the Spectral Energy Distribution (SED). The modelling of the SED, in particular the FIR-mm part, allow us to determine the masses and dust properties of these disks. We detected the disks associated with BD+61154, RR Tau and VY Mon with disk masses of 0.35 Msun, 0.05 Msun and 0.40 Msun respectively. The disk around LkHa 198 was not detected with an upper limit to the disk mass of 0.004 Msun. We detected, however, the disks associated with the younger stellar objects LkHa 198--IR and LkHa 198-mm that are located in the vicinity of LkHa 198. The fitting of the mm part of the SED reveal that the grains in the mid-plane of the disks around BD+61154, RR Tau and VY Mon have sizes of 1--1000 microns. Therefore, grains have not grown to centimetre sizes in these disks yet. These massive (M>3 Msun) and young (about 1 Myr) HAe stars are surrounded by massive (>0.04 Msun) disks with grains of micron-millimetre sizes. Although grain growth is proceeding in these disks, their evolutionary stage is prior to the formation of planetesimals. These disks are less evolved than those detected around T Tauri and Herbig Be stars

    Protostellar clusters in intermediate-mass (IM) star forming regions

    Full text link
    The transition between the low density groups of T Tauri stars and the high density clusters around massive stars occurs in the intermediate-mass (IM) range (M_*\sim2--8 M_\odot). High spatial resolution studies of IM young stellar objects (YSO) can provide important clues to understand the clustering in massive star forming regions. Aims: Our aim is to search for clustering in IM Class 0 protostars. The high spatial resolution and sensitivity provided by the new A configuration of the Plateau de Bure Interferometer (PdBI) allow us to study the clustering in these nearby objects. Methods: We have imaged three IM Class 0 protostars (Serpens-FIRS 1, IC 1396 N, CB 3) in the continuum at 3.3 and 1.3mm using the PdBI. The sources have been selected with different luminosity to investigate the dependence of the clustering process on the luminosity of the source. Results: Only one millimeter (mm) source is detected towards the low luminosity source Serpens--FIRS 1. Towards CB 3 and IC1396 N, we detect two compact sources separated by \sim0.05 pc. The 1.3mm image of IC 1396 N, which provides the highest spatial resolution, reveal that one of these cores is splitted in, at least, three individual sources.Comment: 4 pages, 3 figures, accepted for publication in Astronomy and Astrophysics Letters (Special Feature IRAM/PdB

    The abundance of C18O and HDO in the envelope and hot core of the intermediate mass protostar NGC 7129 FIRS 2

    Full text link
    NGC 7129 FIRS 2 is a young intermediate-mass (IM) protostar, which is associated with two energetic bipolar outflows and displays clear signs of the presence of a hot core. It has been extensively observed with ground based telescopes and within the WISH Guaranteed Time Herschel Key Program. We present new observations of the C18O 3-2 and the HDO 3_{12}-2_{21} lines towards NGC 7129 FIRS 2. Combining these observations with Herschel data and modeling their emissions, we constrain the C18O and HDO abundance profiles across the protostellar envelope. In particular, we derive the abundance of C18O and HDO in the hot core. The intensities of the C18O lines are well reproduced assuming that the C18O abundance decreases through the protostellar envelope from the outer edge towards the centre until the point where the gas and dust reach the CO evaporation temperature (~20-25 K) where the C18O is released back to the gas phase. Once the C18O is released to the gas phase, the modelled C18O abundance is found to be ~1.6x10^{-8}, which is a factor of 10 lower than the reference abundance. This result is supported by the non-detection of C18O 9-8, which proves that even in the hot core (T_k>100 K) the CO abundance must be 10 times lower than the reference value. Several scenarios are discussed to explain this C18O deficiency. One possible explanation is that during the pre-stellar and protostellar phase, the CO is removed from the grain mantles by reactions to form more complex molecules. Our HDO modeling shows that the emission of HDO 3_{12}-2_{21} line is maser and comes from the hot core (T_k>100 K). Assuming the physical structure derived by Crimier et al. (2010), we determine a HDO abundance of ~0.4 - 1x10^{-7} in the hot core of this IM protostar, similar to that found in the hot corinos NGC 1333 IRAS 2A and IRAS 16293-2422.Comment: 10 pages, 7 figure

    Revisiting the case of R Monocerotis: Is CO removed at R

    Get PDF
    Context. To our knowledge, R Mon is the only B0 star in which a gaseous Keplerian disk has been detected. However, there is some controversy about the spectral type of R Mon. Some authors propose that it could be a later B8e star, where disks are more common. Aims. Our goal is to re-evaluate the R Mon spectral type and characterize its protoplanetary disk. Methods. The spectral type of R Mon has been re-evaluated using the available continuum data and UVES emission lines. We used a power-law disk model to fit previous12CO 1 →0 and 2 →1 interferometric observations and the PACS CO data to investigate the disk structure. Interferometric detections of13CO J = 1 →0, HCO+1 →0, and CN 1 →0 lines using the IRAM Plateau de Bure Interferometer (PdBI) are presented. The HCN 1 →0 line was not detected. Results. Our analysis confirms that R Mon is a B0 star. The disk model compatible with the12CO 1 →0 and 2 →1 interferometric observations falls short of predicting the observed fluxes of the 14 &lt; Ju&lt; 31 PACS lines; this is consistent with the scenario in which some contribution to these lines is coming from a warm envelope and/or UV-illuminated outflow walls. More interestingly, the upper limits to the fluxes of the Ju&gt; 31 CO lines suggest the existence of a region empty of CO at R ? 20 au in the protoplanetary disk. The intense emission of the HCO+and CN lines shows the strong influence of UV photons on gas chemistry. Conclusions. The observations gathered in this paper are consistent with the presence of a transition disk with a cavity of Rin≥ 20 au around R Mon. This size is similar to the photoevaporation radius that supports the interpretation that UV photoevaporation is main disk dispersal mechanism in massive stars
    corecore